

Report for Talk on Sewerage Services in Malaysia

by Ir. Dr Lee Yun Fook

Ir. Dr Lee Yun Fook is currently a co-opted member in the Civil and Structural Engineering Technical Division (CSETD).

The Civil and Structural Engineering Technical Division (CSETD) invited Ir. Dr. Lee Yun Fook, the head of Waste and Environment Team of Sepakat Setia Perunding Sdn Bhd (SSP), to deliver a talk on "Sewerage Services in Malaysia" on 9th November 2017 at Tan Sri Prof. Chin Fung Kee Auditorium, Wisma IEM. Total of 90 participants attended the talk.

Ir. Dr. Lee started his talk with an introduction on the revolution of sewage treatment system in Malaysia from primitive system to mechanized/advance treatment system. Ir. Dr. Lee also shared the national sewerage policy whereby the country is moving towards centralized (bigger capacity) sewerage system by decommissioning multi-points STP (7000 numbers) into CSTP; the authorities involve in sewerage submission; the relevant Acts, Regulations and guidelines governing the sewerage industry in Malaysia.

After the introduction, Ir. Dr. Lee presented the three main elements of sewerage services in line with the Country's National Sewerage Policy of moving towards Centralised system i.e. Centralised Sewage Treatment Plants (CSTP), Centralised Sewerage network and Network Pumping Stations.

Under the CSTP section, Ir. Dr. Lee shared that the four largest CSTP in Malaysia are Pantai 2 CSTP, Jelutong CSTP, Langat CSTP and Bunus 2 CSTP with population equivalent (P.E.) of 1.4 million, 1.2 million, 920,000 and 750,000 respectively. Ir. Dr. Lee further elaborated on two major CSTP projects completed by SSP i.e. the Jelutong CSTP (Malaysia) and Yen So Wastewater Treatment Plant (WWTP) located at Hanoi, Vietnam with the details as shown in **Table 1** below.

Table 1: Summary of project details for Jelutong CSTP and Yen So WWTP

Project Title	Jelutong CSTP	Yen So WWTP
Location	Penang, Malaysia	Hanoi Vietnam
Capacity	Ultimate: 1.2 million PE	200,000m3/day
	Mechanical & Electrical Equipment	
	installation: 800,000 PE	
Type of	Domestic sewage (conveyed in	Untreated sewage & storm water
wastewater	separate sewer)	runoff (conveyed in Combined
		sewer)
Source of	From piped sewer (gravity/ force	Collected from existing canals i.e.
Wastewater	main) : separate system	Kim Nguu River and Set River,
		dammed with Radial Gates
Year of Completion	2008	2012
Land Area	12 Ha	7.5 Ha

Challenges at Site	Built on reclamation land of ex landfill land and swamp land (see Figure 1 &	Built on soft ground
	Figure 2)	
Technology	Sequential Batch Reactors (SBR)	SBR
Environment	120,000 m3/day raw sewage being	Untreated sewage being
Challenges	discharge to the sea prior to the	discharged in the combined sewer
Addressed in	project, causing severe sea water	(main drain/ river), floating debris
project	pollution	in canals/rivers/lakes, difficulties to
		lay sewer at Old & congested city
		of Hanoi (1000 years old city).
		Septic water in drainage is being
		extracted for irrigation and fish
		farming, causing serious health
		hazard to the farmer and
		environment.
Solution	CSTP to treat sewage to Standard A	Introduced radial gate complete
	effluent standard prior to discharge to	with fully mechanized debris
	sea.	removal system at strategic
		locations (see Figure 3), Construct
		Yen So WWTP to treat the
		wastewater and discharge high
		quality effluent back to the
		downstream river system.
Component of	Liquid treatment line (Inlet Pumping	Similar to Jelutong STP but added
CSTP	Station, Preliminary Treatment Works,	with Ultraviolet (UV) disinfection
	SBR, reclaimed water filtration), solid	system and Membrane filtration
	treatment line (mechanized Sludge	system to produce higher quality
	thickening, digestion and dewatering),	effluent for downstream river and
	gas treatment line (Methane gas	internal plant usage.
	storage and Co-generator)	

Ir. Dr. Lee highlighted that from the experience gained from the success of Jelutong CSTP, Malaysian experts (Consultant, Contractor and suppliers) had exported the SBR technology to Hanoi Vietnam and managed to complete the first CSTP in Vietnam to address the immediate environmental needs of wastewater and debris pollutions.



Figure 1: Aerial Photograph showing Jelutong CSTP site (red boundary) on existing landfill and swampy land

Figure 2: Aerial Photograph showing Jelutong CSTP

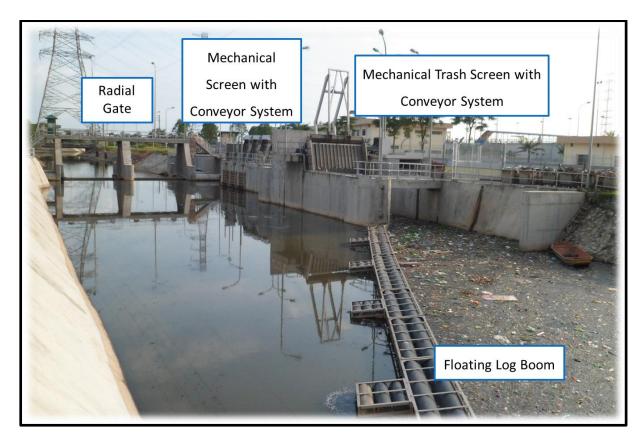


Figure 3: Typical Radial Gates/ Water intake structures complete with fully automated debris removal system at Yen So WWTP project (Technology from Malaysia)

After the CSTP, Ir. Dr. Lee talked about sewerage network projects, started with the design criteria for hydraulic (pipe sizing), pipe selection, method of pipe laying (pipe jacking or conventional open cut method) etc, followed by several real projects with catchment size range from 60,000 to 550,000 PE with length of trunk sewer varies from 10 km to 40 km. Ir. Dr. Lee had further demonstrated the centralized sewerage network project comprises gravity sewer, force main and network pumping stations (NPS). NPS is an important element in the centralized sewerage project to lift up the sewage when the sewer reaches certain depth (due to difficulty of construction and authority requirement). Besides NPS is common used to cross rivers, localized hill, railway, highway etc. Before he ended his presentation, Ir. Dr. Lee highlighted the challenges in laying trunk sewer in city area due to congested underground utilities and shared two depth sewer project i.e. Kuching sewerage and Singapore sewerage with maximum depth of 27m and 50m below ground respectively.

Ir. Dr. Lee concluded his talk by reiterating the latest sewerage strategy of implementing centralized sewerage system due to economy of scale and better treatability.

IEM's Vice President, Ir. Prof. Dr. Jeffery Chiang Choong Luin presented Ir. Dr. Lee a memento and certificate of appreciation in the presence of CSETD's Chairman Ir. Dr. Ng Soon Ching.